40 research outputs found

    Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays

    Get PDF
    BACKGROUND: The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve. NEW METHOD: We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles. RESULTS: Recorded compound action potentials were larger with CF compared to SS (∼700μV vs ∼300μV); however, background noise was greater (6.3μV vs 1.7μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402±30μm) and CF MEA (414±123μm), with no statistical difference between MicroCT (625±17μm) and CF (p>0.05) and between CF and EIT (p>0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103±51μm, p<0.05). COMPARISON WITH EXISTING METHODS: EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results. CONCLUSIONS: Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves

    Societal issues concerning the application of artificial intelligence in medicine

    Get PDF
    Medicine is becoming an increasingly data-centred discipline and, beyond classical statistical approaches, artificial intelligence (AI) and, in particular, machine learning (ML) are attracting much interest for the analysis of medical data. It has been argued that AI is experiencing a fast process of commodification. This characterization correctly reflects the current process of industrialization of AI and its reach into society. Therefore, societal issues related to the use of AI and ML should not be ignored any longer and certainly not in the medical domain. These societal issues may take many forms, but they all entail the design of models from a human-centred perspective, incorporating human-relevant requirements and constraints. In this brief paper, we discuss a number of specific issues affecting the use of AI and ML in medicine, such as fairness, privacy and anonymity, explainability and interpretability, but also some broader societal issues, such as ethics and legislation. We reckon that all of these are relevant aspects to consider in order to achieve the objective of fostering acceptance of AI- and ML-based technologies, as well as to comply with an evolving legislation concerning the impact of digital technologies on ethically and privacy sensitive matters. Our specific goal here is to reflect on how all these topics affect medical applications of AI and ML. This paper includes some of the contents of the “2nd Meeting of Science and Dialysis: Artificial Intelligence,” organized in the Bellvitge University Hospital, Barcelona, Spain.Peer ReviewedPostprint (author's final draft

    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    Get PDF
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals

    Rodent scope: A user-configurable digital wireless telemetry system for freely behaving animals

    Get PDF
    This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m
    corecore